DS05-10163-2E

MEMORY COS 4 M × 1 BIT FAST PAGE MODE DYNAMIC RAM

MB814100D-60/-70

CMOS 4,194,304 × 1 Bit Fast Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB814100D is a fully decoded CMOS Dynamic RAM (DRAM) that contains 4,194,304 memory cells in $4M \times 1$ configuration. The MB814100D features a "fast page" mode of operation whereby high-speed random access of up to 2,048-bits of data within the same row can be selected. The MB814100D DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and wide bandwidth are basic requirements of the design. Since the standby current of the MB814100D is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

The MB814100D is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB814100D are not critical and all inputs are TTL compatible.

PRODUCT LINE & FEATURES

I	Parameter	MB814100D-60	MB814100D-70		
RAS Access Tim	ne	60 ns max.	70 ns max.		
CAS Access Tim	ne	15 ns max.	20 ns max.		
Address Access	Time	30 ns max.	35 ns max.		
Randam Cycle T	ïme	110 ns min.	125 ns min.		
Fast Page Mode	Cycle Time	40 ns min.	45 ns min.		
Low Power	Operating Current	605 mW max.	550 mW max.		
Dissipation	Standby Current	11 mW max. (TTL level) / 5.5 mW max. (CMOS level			

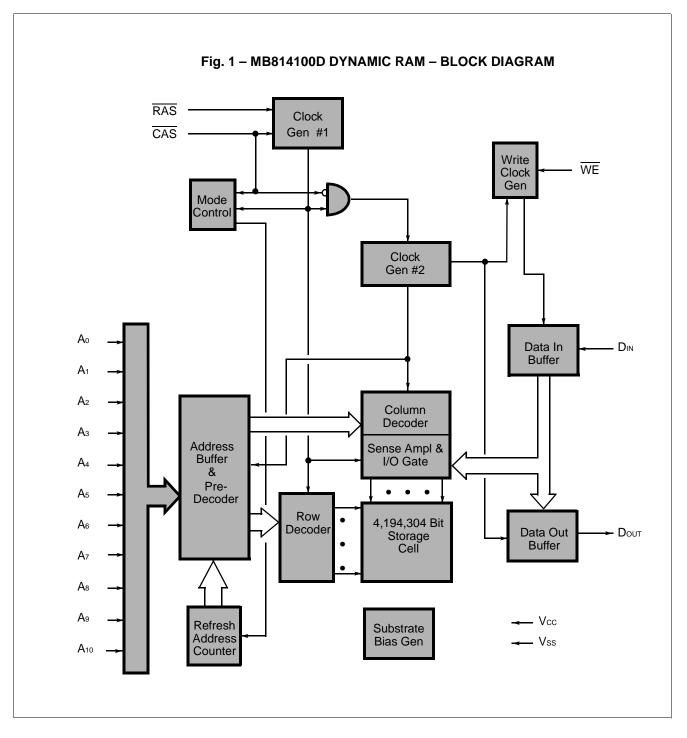
- 4,194,304 words \times 1 Bit organization
- Silicon gate, CMOS, 3D-Stacked capacitor Cell
- All input and output are TTL compatible
- 1024 refresh cycles every 16.4 ms
- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast page Mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-1 to +7	V
Voltage of V_{CC} supply relative to V_{SS}	Vcc	-1 to +7	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	Ιουτ	±50	mA
Storage Temperature	Tstg	-55 to +125	°C

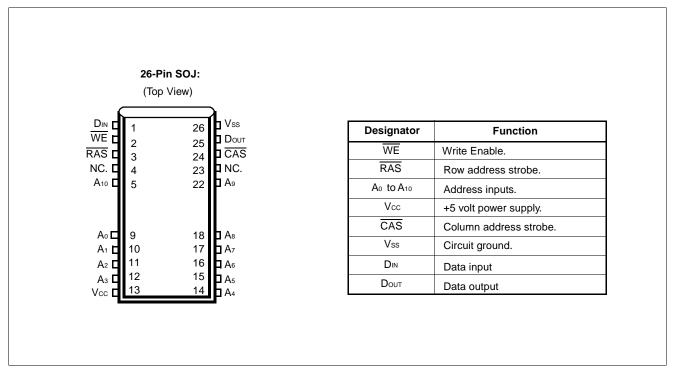
WARNING: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


■ PACKAGE

Plastic SOJ Package (LCC-26P-M04)

Package and Ordering Information

- 26-pin plastic (300 mil) SOJ, order as MB814100D-xxPJN



■ CAPACITANCE

 $(T_A=25^{\circ}C, f = 1MHz)$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, A ₀ to A ₁₀ , D _{IN}	CIN ₁	—	5	pF
Input Capacitance, RAS, CAS, WE	CIN ₂	—	7	pF
Output Capacitance, Dout	Соит		7	pF

■ PIN ASSIGNMENTS AND DESCRIPTIONS

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp
	1	Vcc	4.5	5.0	5.5	V	
Supply Voltage*		Vss	0	0	0	v	
Input High Voltage, all inputs*	1	Vін	2.4		6.5	V	0 5°C to + 70°C
Input Low Voltage, all inputs*	1	VIL	-2.0		0.8	V	

* : Reference Voltage : Vss = 0 V

Note: Recommended operating conditions are the recommended values for guarantee of LSI's normal logic operations.

Under this conditions, the limits value of electrical characteristic (AD/DC)is guaranteed.

FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty two input bits are required to decode any one of 4,194,304 cell addresses in the memory matrix. Since only eleven address bits are available, the column and row inputs are separately strobed by CAS and RAS as shown in Figure <u>5</u>. First, eleven row address bits are input on pins A₀-through-A₁₀ and latched with the row address strobe (RAS) then, eleven column address bits are input and latched with <u>the column address</u> strobe (CAS). Both row and column addresses must be stable on or before the falling edge of CAS and RAS, respectively. The address latches are of the flow-through type; thus, address information appearing after transmission address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of two basic ways--an early write cycle and a read-modify-write cycle. The falling edge of WE or CAS, whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data is strobed by CAS and the setup/hold times are referenced to CAS because WE goes Low before CAS. In a delayed write or a read-modify-write cycle, WE goes Low after CAS; thus, input data is strobed by WE and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- t_{RAC} : from the falling edge of \overline{RAS} when t_{RCD} (max.) is satisfied.
- tcac: from the falling edge of \overline{CAS} when trep is greater than trep (max.).
- tAA: from column address input when trad is greater than trad (max.).

The data remains valid until \overline{CAS} returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 2,048-bits can be accessed and, when multiple MB 814100Ds are used, CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

■ DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Note 3

Deremeter	Natao	Symbol	Condition		Unit			
Parameter	Notes	Symbol	Condition	Min.	Тур.	Max.	Unit	
Output High Voltage	1	Vон	Іон = -5.0 mA	2.4	—	_	V	
Output Low Voltage	1	Vol	lo∟= 4.2 mA	_		0.4	V	
Input Leakage Current (A	any Input)	lı(L)	$\begin{array}{l} 0 \ V \leq V_{\text{IN}} \ 5.5 \ \text{V}; \\ 4.5 \ \text{V} \leq \text{Vcc} \leq 5.5 \ \text{V}; \\ \text{Vss} = 0 \ \text{V}; \ \text{All other pins} \\ \text{not under test} = 0 \ \text{V} \end{array}$	-10	_	10	μΑ	
Output Leakage Current		IO(L)	0V≤Vouт≤5.5V; Data out disabled	-10		10		
Operating Current (Average Power	MB814100D-60	Icc1	RAS & CAS cycling;			110	mA	
Supply Current) 2	MB814100D-70	1001	$t_{RC} = min.$			100		
Standby Current	TTL level	ICC2	$\overline{RAS} = \overline{CAS} = V_{IH}$		_	2.0	mA	
(Power Supply Current)	CMOS level	ICC2	$\overline{\text{RAS}} = \overline{\text{CAS}} \ge V_{\text{CC}} - 0.2 \text{ V}$			1.0		
Refresh Current #1 (Average Power	MB814100D-60	Іссз	$\overline{CAS} = V_{H}, \overline{RAS}$ cycling;			110	mA	
Supply Current) 2	MB814100D-70	1005	t _{RC} = min.			100		
Fast Page Mode Current	MB814100D-60	CC4	$\overline{RAS} = V_{\parallel}, \overline{CAS} \text{ cycling};$			55		
2	MB814100D-70	1004	t⊧c = min.			50	mA	
Refresh Current #2 (Average Power	MB814100D-60	Icc5	RAS cycling; CAS-before-RAS;			110	mA	
Supply Current) 2	MB814100D-70	1000	$t_{RC} = min.$			100		

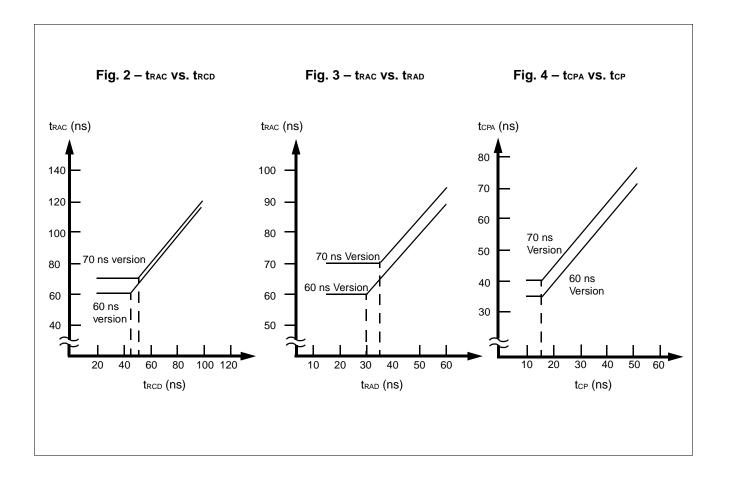
■ AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

Na	Beremeter	Nataa	Symbol	MB814	100D-60	MB814	110:4	
No.	Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh		tref		16.4		16.4	ms
2	Random Read/Write Cycle Time		trc	110	_	125		ns
3	Read-Modify-WriteCycle Time		t rwc	130		150		ns
4	Access Time from \overline{RAS}		t rac		60		70	ns
5	Access Time from \overline{CAS}	6, 9	t CAC		15	—	20	ns
6	Column Address Access Time	7, 9	taa	—	30	_	35	ns
7	Output Hold Time	8, 9	tон	0	—	0		ns
8	Output Buffer Turn On Delay Time		ton	0	—	0	_	ns
9	Output Buffer Turn Off Delay Time	10	toff	—	15		15	ns
10	Transition Time		t⊤	2	50	2	50	ns
11	RAS Precharge Time		t RP	40	—	45	—	ns
12	RAS Pulse Width		tras	60	100000	70	100000	ns
13	RAS Hold Time		t RSH	15	—	20	—	ns
14	CAS to RAS Precharge Time		t CRP	5	—	5	—	ns
15	RAS to CAS Delay Time	11, 12	trcd	20	45	20	50	ns
16	CAS Pulse Width		t CAS	15	—	20	_	ns
17	CAS Hold Time		t csн	60	_	70		ns
18	CAS Precharge Time (Normal)	17	t CPN	10	—	10	—	ns
19	Row Address Set Up Time		t ASR	0	—	0		ns
20	Row Address Hold Time		t rah	10	—	10	—	ns
21	Column Address Set Up Time		tasc	0	—	0		ns
22	Column Address Hold Time		t CAH	15		15		ns
23	RAS to Column Address Delay Tim	13	t RAD	15	30	15	35	ns
24	Column Address to RAS Lead Time		t RAL	30	_	35	_	ns
25	Column Address to CAS Lead Time		t CAL	30	_	35	_	ns
26	Read Command Set Up Time		trcs	0	_	0		ns
27	Read Comman <u>d an</u> d Hold Time Referenced to RAS	14	t rrh	0	_	0	_	ns
28	Read Comman <u>d an</u> d Hold Time Referenced to CAS	14	t RCH	0		0	_	ns
29	Write Command Set Up Time	15	twcs	0	—	0		ns
30	Write Command Hold Time		t wcн	10	_	10	_	ns

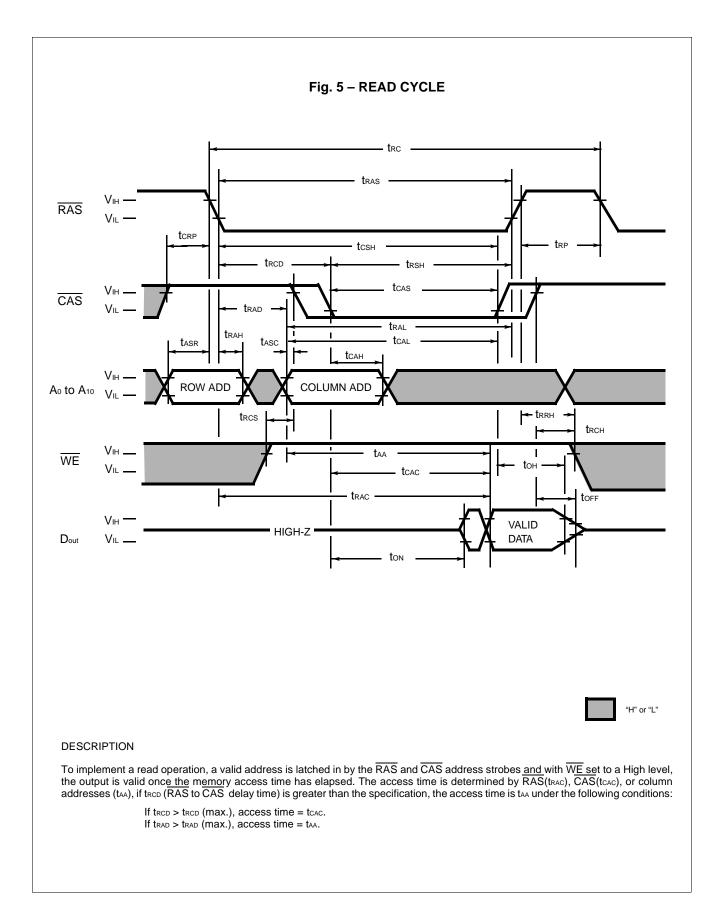
■ AC CHARACTERISTICS (Continued)

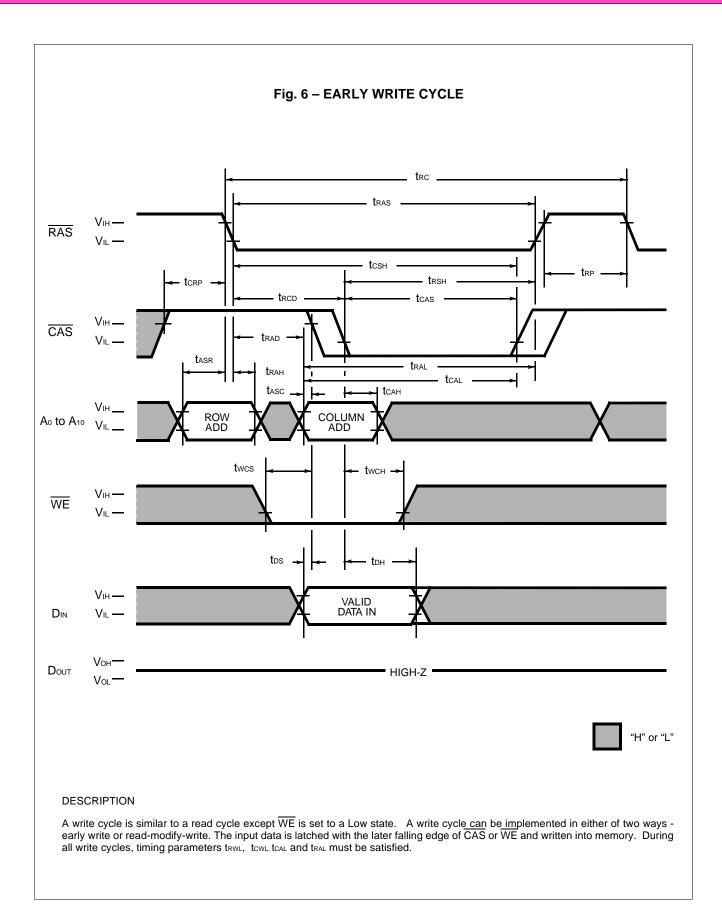
(At recommended operating conditions unless otherwise noted.) Notes 3, 4, 5

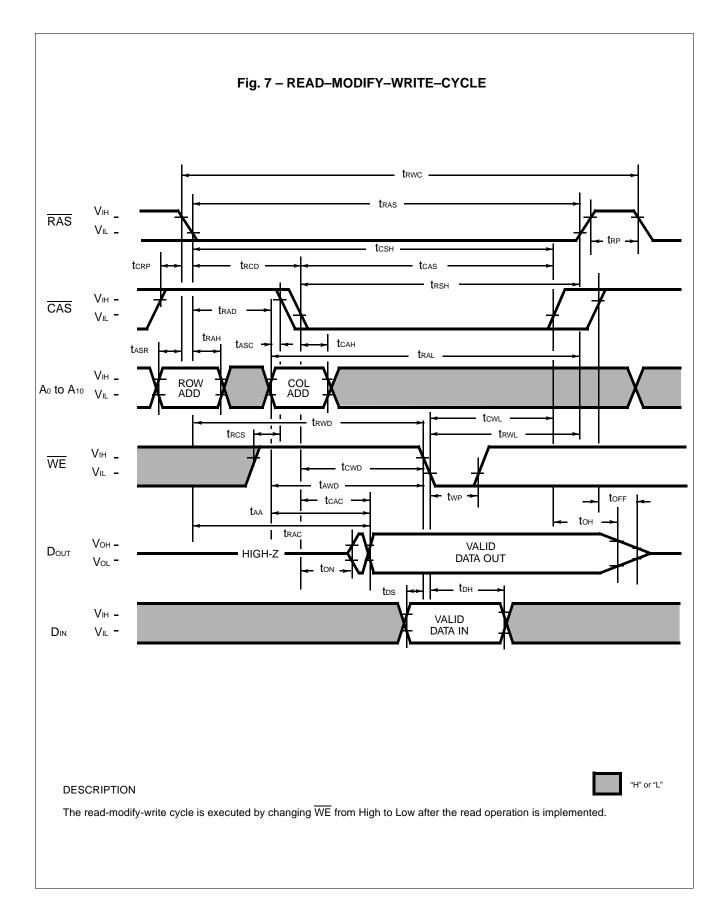

No.	Parameter	Notes	Symbol	MB814	100D-60	MB814	Unit	
NO.	Farameter	NOLES	Symbol	Min.	Max.	Min.	Max.	Unit
31	WE Pulse Width		twp	10	—	10	—	ns
32	Write Command to RAS Lead Time		t RWL	15		20		ns
33	Write Command to \overline{CAS} Lead Time		tcwL	20		20		ns
34	DIN Set Up Time		tos	0	—	0	—	ns
35	DIN Hold Time	19	tон	15/18	—	15/18	—	ns
36	RAS to WE Delay Time	15	t rwd	60		70		ns
37	CAS to WE Delay Time	15	tcwp	15		20		ns
38	Column Address to \overline{WE} Lead Time	15	tawd	30	—	35		ns
39	RAS Precharge Time to CAS Active Time (Refresh cycles)		t RPC	10	_	10		ns
40	\overline{CAS} Set Up Time for \overline{CAS} -before-RAS Refresh		t csr	0	_	0		ns
41	CAS Hold Time for CAS -before- RAS Refresh		t CHR	10	_	10	_	ns
42	$\overline{\text{WE}}$ Set Up Time from $\overline{\text{RAS}}^{*18}$	18	twsr	10	_	10		ns
43	WE Hold Time from RAS*18	18	t whr	10	—	10	—	ns
44	Fast Page Mode RAS Pulse Width		t RASP	_	200000	_	200000	ns
45	Fast Page Mode Read/Write Cycle Time		t PC	40	_	45		ns
46	Fast Page Mode Read-Modify-Write Cycle Time		t PRWC	65	_	70		ns
47	Access Time from \overline{CAS} Precharge	9, 16	t CPA		35		40	ns
48	Fast Page Mode CAS Precharge Time		t _{CP}	10	—	10	—	ns
49	Fast Page Mode RAS Hold Time CAS Precharge		t RHCP	35	_	40		ns
50	Fast Page Mode CAS Precharge Time WE Delay Time		t CPWD	35	_	40	_	ns

Notes: 1. Referenced to Vss.

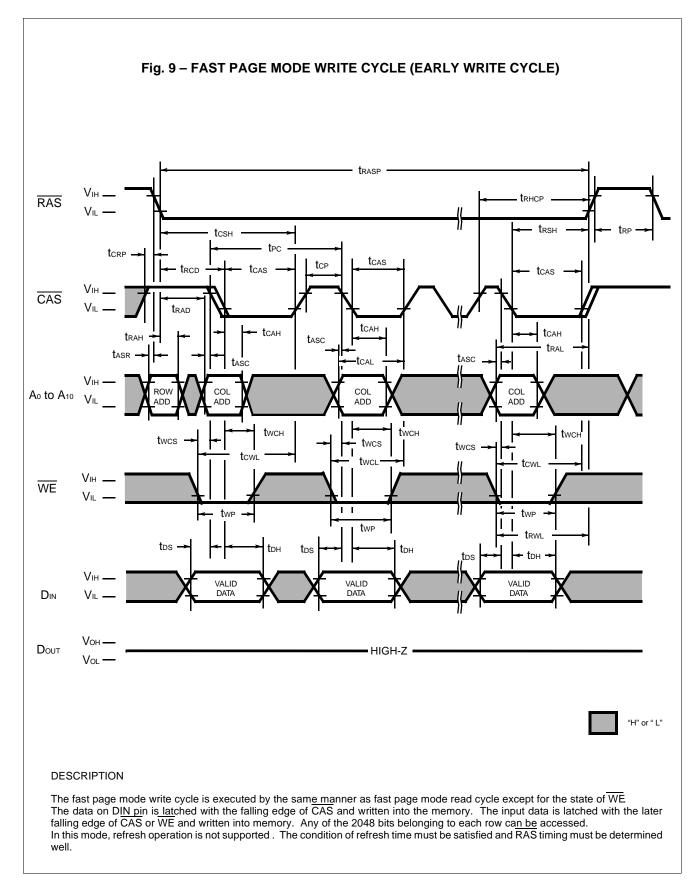
Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

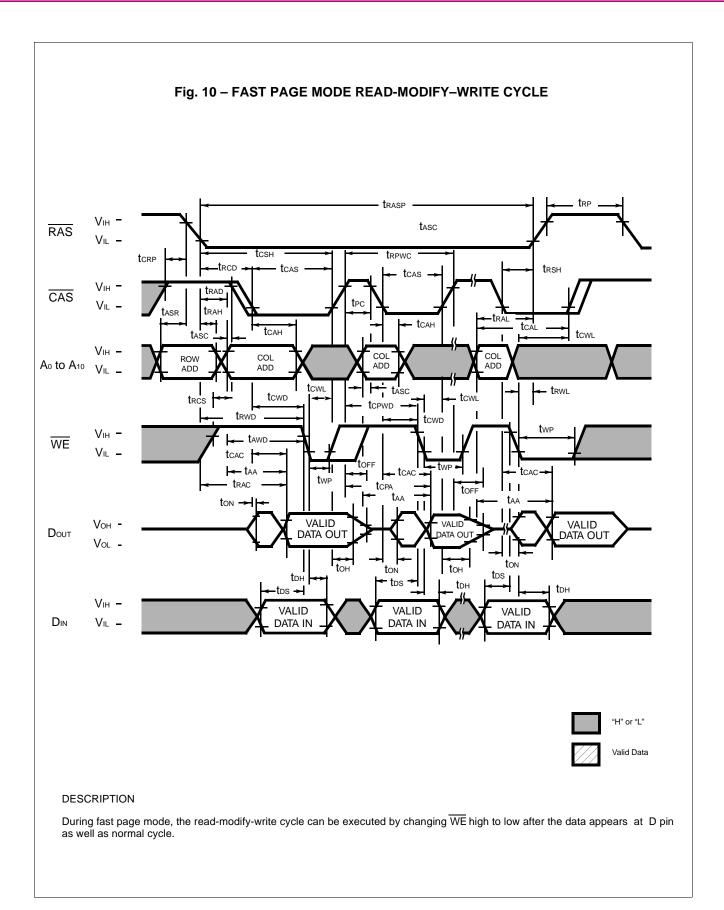

Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$, $V_{IL} > -0.5$ V. Icc1, Icc3 and Icc5 are specified at one time of address change during $\overline{RAS} = V_{IL}$ and $\overline{CAS} = V_{IH}$. Icc4 is specified at one time of address change during one Page cycle.

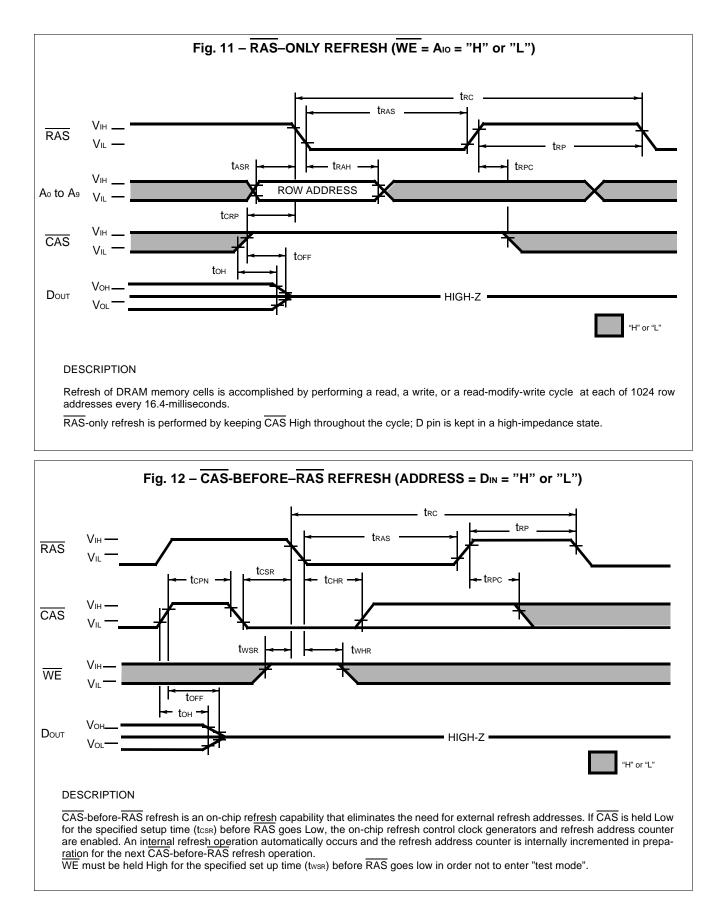

- 3. An <u>Initial pause (RAS=CAS=VH) of 200 µs is required after power-up followed by RAS only refresh cycle</u> or CAS before RAS refresh cycle (WE= "H") <u>before proper device operation is achieved</u>. In case of using internal refresh counter, a minimum of eight CAS -before-RAS initialization cycles instead of RAS only refresh cycle are required.
- 4. AC characteristics assume $t_T = 5$ ns.
- 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- 6. Assumes that trcd ≤ trcd (max.) and trad ≤ trad (max.). If trcd > trcd (max.) or trad > trad (max.), trac will be increased by the amount that trcd or trcd exceeds the maximum recommended value shown in this table. Refer to Fig. 2 and 3.
- 7. If trcd \geq trcd (max.), trad \geq trad (max.), and tasc \geq taa tcac tr, access time is tcac.
- 8. If trad \geq trad (max.) and tasc \leq taa tcac tt, access time is taa.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toff is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.)+ 2 tr + tasc (min.).
- 13. Operation within the trad (max.) limit ensures that trac (max.) can be met. trad (max.) is specified as a reference point only; if trad is greater than the specified trad (max.) limit, access time is controlled exclusively by trac or taa.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs, trwb, tcwb and tawb are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.), the cycle is a Early-Write cycle and data out pin will remain open circuit (high impedance) through the entire cycle. If twrb ≥ twrb (min.), tcwb ≥ tcwb (min.) and tawb ≥ tawb (min.), the cycle is a Read-Modify-Write cycle and data out pin will contain data read from the selected cell. If WE is falled when neither of above sets of conditions is satisfied, the cycle is a Delayed-Write cycle and the writing to the selected cell is executed when trwb, tcwb, tcab and trab are satisfied, but the condition of the data out pin is indeterminated.
- 16. t_{CPA} is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if t_{CP} is long, t_{CPA} is longer than t_{CPA} (max.).
- 17. Assumes that \overline{CAS} -before- \overline{RAS} refresh.
- 18. Assumes that Test mode function.
- 19. If trcd \leq trcd (max.), tdH = 18 ns. Otherwise, tdH = 15 ns

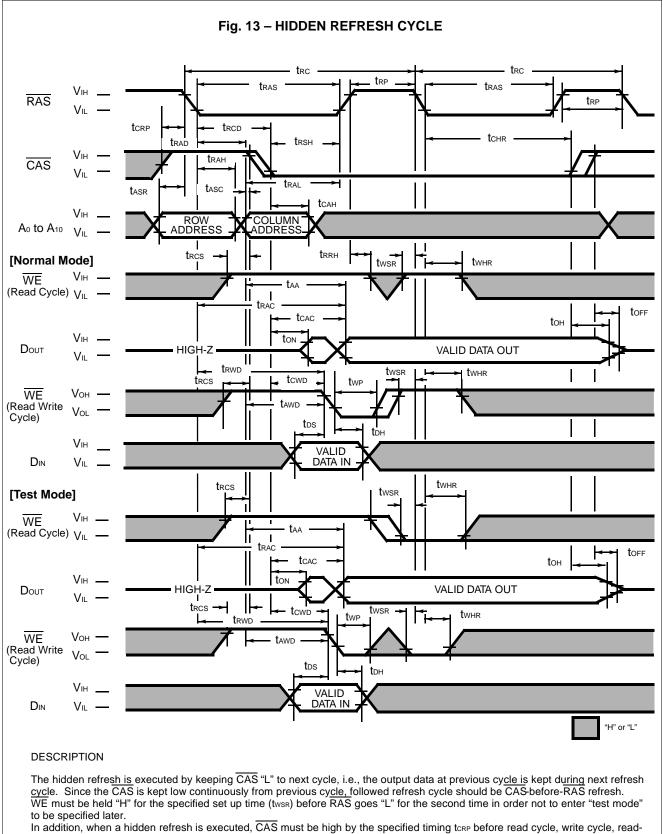


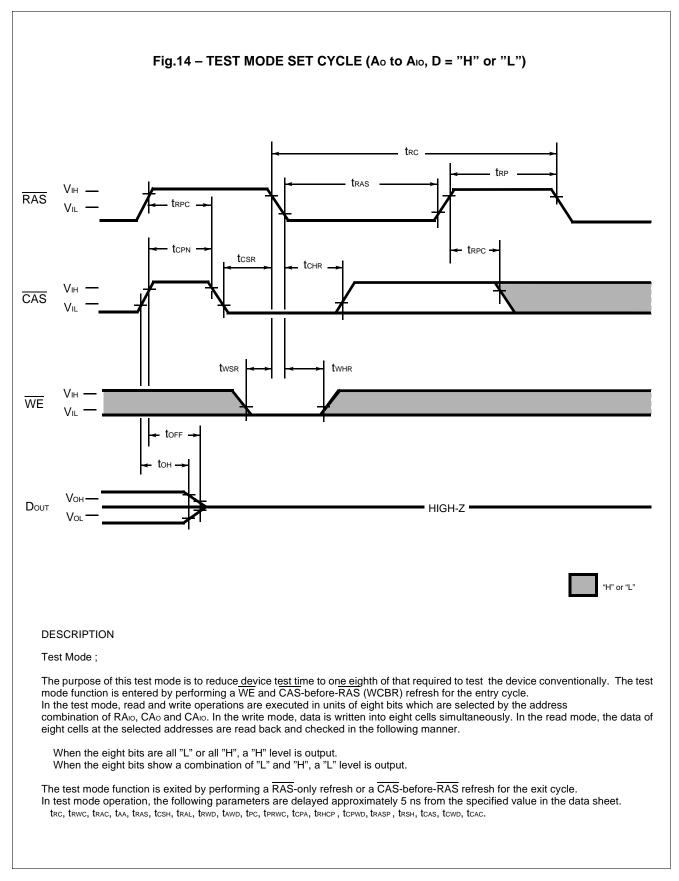
Operation Made	Clock Input		Address		Input Data		Refresh	Note	
Operation Mode	RAS	CAS	WE	Row	Row Column Input Oupput		Refresh	Note	
Standby	Н	Н	Х	_	—		High-Z	—	
Read Cycle	L	L	Н	Valid	Valid		Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	Valid	Valid	Valid	High-Z	Yes*	twcs ≥ twcs (min.)
Read-Modify-Write Cycle	L	L	H→L	Valid	Valid	X→ Valid	Valid	Yes*	tcwp ≥ tcwp (min.)
RAS-only Refresh Cycle	L	н	х	Valid	_	_	High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	н	_	_		High-Z	Yes	tcsr ≥ tcsr (min.)
Hidden Refresh Cycle	H→L	L	н	_	_		Valid	Yes	Previous data is kept.
Test Mode Set Cycle (CBR)	L	L	L	_	_	_	High-Z	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)
Test Mode Set Cycle (Hidden)	H→L	L	L	_		_	Valid	Yes	tcsr ≥ tcsr (min.) twsr ≥ twsr (min.)

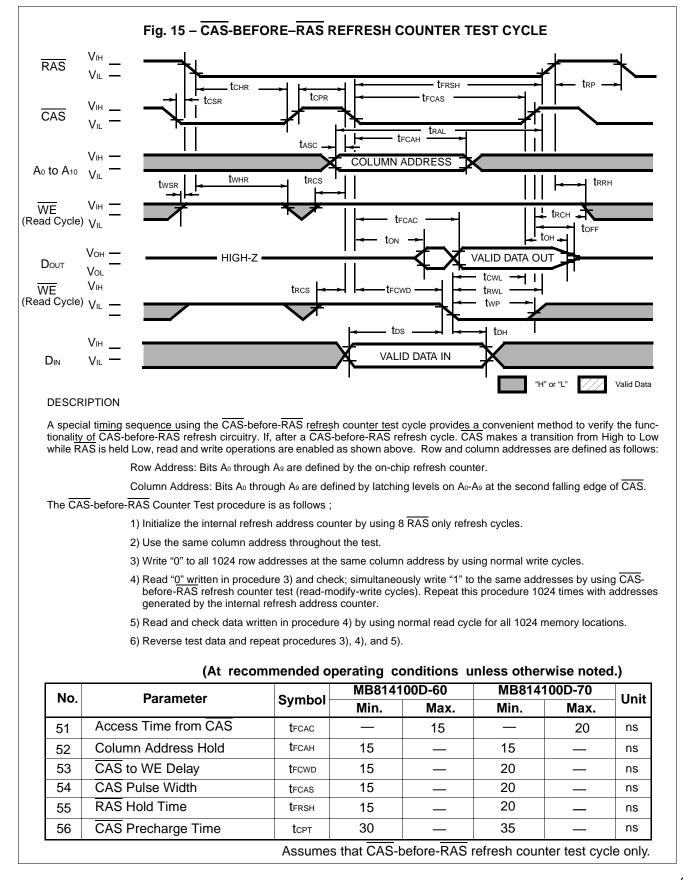

X; "H" or "L" *; It is impossible in Fast Page Mode

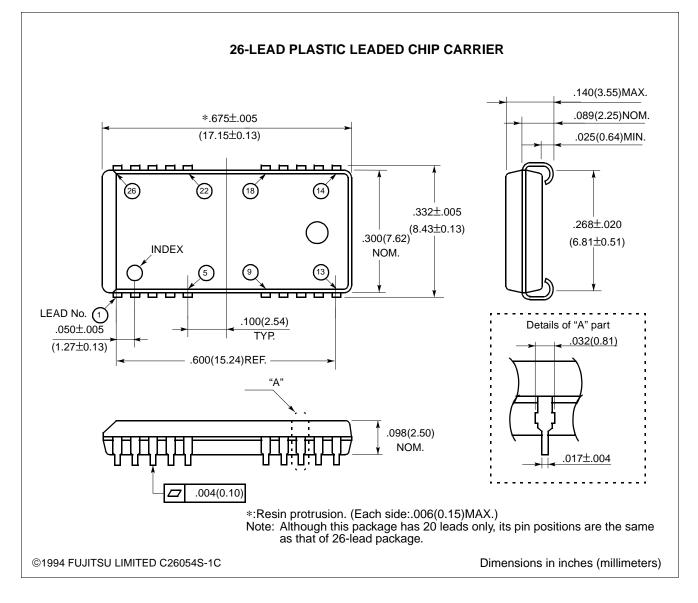












In addition, when a hidden refresh is executed, CAS must be high by the specified timing tcrep before read cycle, write cycle, rea write/ read-modify-write or page-mode cycle is executed.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 189554 Tel: 336-1600 Fax: 336-1609 All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.